Researchers identify a new marker related to the dysfunction of the glymphatic system

A new study led by researchers from the University of Barcelona shows that wasteosomes — structures that act as containers for brain waste products — indicate a malfunction of the glymphatic system, a recently discovered system that is an important brain-cleaning mechanism.

The study, published in the journal Proceedings of the National Academy of Sciences (PNAS), was carried out by a research team from the UB Faculty of Pharmacy and Food Sciences, the UB Institute of Neurosciences (UBNeuro) and the Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED). It has been directed by professors Carme Pelegrí and Jordi Vilaplana, with the participation of Marta Riba and Jaume del Valle, from the Faculty of Pharmacy and Food Sciences, UBNeuro and CIBERNED, and Laura Molina-Porcel, from the Neurological Tissue Bank of the Biobank of the Hospital Clínic de Barcelona and IDIBAPS.

Waste containers, a very recent vision

The wasteosomes or amylase bodies of the human brain were first described in 1837 by the renowned anatomist and physiologist Jan Evangelist Purkinje. For more than 150 years, the functions of these structures have generated much doubt and controversy among experts. “During the long history of the study of these structures, many and varied hypotheses have been generated about their nature and significance,” the researchers note.

A study published in 2019 also in the journal PNAS, led by the researchers themselves, showed that amylase bodies act as containers for waste substances from the brain and can be expelled by astrocytes (the cells that generate them) into the cerebrospinal fluid (the fluid surrounding the brain). Later, the same group suggested the term wasteosomes, which means ‘body containing waste products’, for the amyloid bodies.

The term was presented because it highlights the uptake of these substances and avoids the terminological confusion that the term amyloid and amylacea generated with amyloid proteins, which are characteristic of some neurodegenerative diseases such as Alzheimer’s disease.

Source: Read Full Article