Major discovery about mammalian brains surprises researchers

In a new breakthrough to understand more about the mammalian brain, University of Copenhagen researchers have made an incredible discovery. Namely, a vital enzyme that enables brain signals is switching on/off at random, even taking hours-long “breaks from work.” These findings may have a major impact on our understanding of the brain and the development of pharmaceuticals. Today, the discovery is on the cover of Nature.

Millions of neurons are constantly messaging each other to shape thoughts and memories and let us move our bodies at will. When two neurons meet to exchange a message, neurotransmitters are transported from one neuron to another with the aid of a unique enzyme.

This process is crucial for neuronal communication and the survival of all complex organisms. Until now, researchers worldwide thought that these enzymes were active at all times to convey essential signals continuously. But this is far from the case.

Using a groundbreaking method, researchers from the University of Copenhagen’s Department of Chemistry have closely studied the enzyme and discovered that its activity is switching on and off at random intervals, which contradicts our previous understanding.

“This is the first time anyone has studied these mammalian brain enzymes one molecule at a time, and we are awed by the result. Contrary to popular belief, and unlike many other proteins, these enzymes could stop working for minutes to hours. Still, the brains of humans and other mammals are miraculously able to function,” says Professor Dimitrios Stamou, who led the study from the center for Geometrically Engineered Cellular Systems at the University of Copenhagen’s Department of Chemistry.

Until now, such studies were carried on with very stable enzymes from bacteria. Using the new method, the researchers investigated mammalian enzymes isolated from rats’ brains for the first time. Today, the study is published and placed on the cover of the scientific journal Nature.

Source: Read Full Article